Influence of process variables on extraction of Cefalexin in a novel biocompatible ionic liquid based-aqueous two phase system.

نویسندگان

  • Shiva Abdolrahimi
  • Bahram Nasernejad
  • Gholamreza Pazuki
چکیده

Despite the fact that ionic liquid-based aqueous two phase systems (ATPSs) have been widely studied for extraction purposes, the adequacy of biodegradable organic salts as salting out agents has been left unexploited. In this study, we investigated the ability of sodium-based organic salts in the formation of ATPS in the presence of a common ionic liquid, [C4mim]BF4. In the pioneering aspect of this work, Response Surface Methodology (RSM) based on three-variable central composite design (CCD) was employed for determination of the effect of pH and the initial concentration of phase components on the partition coefficient of Cefalexin. Consequently, regression model equations and contour plots were applied to evaluate the effect of system's parameters on biomolecule's extraction. The tie-line (TL) data were determined for each experimental run and their reliability was confirmed by Othmer-Tobias and Bancroft correlations. In order to investigate the salting-out ability the effective excluded volume (EEV) was determined from the binodal data. Furthermore, FTIR spectra confirmed no chemical interactions between Cefalexin and [C4mim]BF4 in the extraction process. The microscopic structure of the top phase was analyzed by DLS, conductivity and TEM in order to investigate the mechanism of extraction. Hydrophobic interaction, the salting-out effect and the aggregation phenomena played the dominant role in the study of the extraction process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel and efficient procedure for the preparation of benzyl alcohol by hydrolysis of benzyl chloride catalyzed by PEG1000-DAIL[BF4]/Fe2(SO4)3 under homogeneous catalysis in aqueous media

In this work, benzyl alcohol was obtained in 96% excellent yield by hydrolysis of benzyl chloride catalyzedby the recyclable temperature-dependant phase-separation system that comprised the ionic liquid PEG1000-DAIL[BF4], toluene and ferric sulfate under homogeneous catalysis in aqueous media. This novel methodnot only enhanced the yield, but also made the operating units easy workup. The catal...

متن کامل

Extraction of Acetaminophen from Aqueous Solution by Emulsion Liquid Membrane Using Taylor-Couette Column

A study on the extraction of Acetaminophen (ACTP) which is also known as paracetamol, from aqueous solution by emulsion liquid membrane process using Taylor-Couette Column (TCC) was investigated. An ELM consists of three phase system which are the external, membrane and internal phases. The external phase containing the ACTP aqueous solution to be treated. Basically, the internal and membrane p...

متن کامل

Ionic Liquid Based Dispersive Liquid Liquid Microextraction and Enhanced Determination of the Palladium in Water, Soil and Vegetable Samples by FAAS

In this study, we combined Ionic Liquid-based Dispersive Liquid Liquid Micro Extraction (IL-DLLME) with FAAS for determining the palladium in different real samples at the trace level. 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF6] ionic liquid and 1-(2-pyridylazo) 2-naphthol (PAN), were chosen as the extraction solvent and the chelating agent, respectively. The hydr...

متن کامل

Extraction of Silver Ions from Aqueous Solutions by Emulsion Liquid Membrane

A comprehensive study pertaining to the emulsion liquid membrane (ELM) extraction process to enrich dilute aqueous solutions of silver salt is presented. The study has highlighted the importance and influence of membrane composition for maximizing the extraction of Ag+ ions. The liquid membrane was made up of Cyanex-302 as an extractant and the industrial solvent mainly consists of p...

متن کامل

Porous Acidic Catalyst, Functionalized with Imidazole Ionic Liquid ([SBA-Im]HSO4) as a Novel Phase Transfer Catalyst for The Aqueous Synthesis of Benzyl Thiocyanates and Azides

In the present study, application of porous acidic catalyst functionalized with an imidazoleionic liquid ([SBA-Im]HSO4) as a phase transfer catalyst for the facile preparation of benzylthiocyanates and azides in water has been described. The catalyst has been characterized byFourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmissionelectron microscopy (TEM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2015